Four New Triterpenes from Anchusa azurea var. azurea

by Ayşe Kuruüzüm-Uz*a), Zuhal Güvenalp^b), Cavit Kazaz^c), Bekir Salih^d), and L. Ömür Demirezer^a)

^a) Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR-06100, Ankara (phone: +90-312-3051089; e-mail: ayseuz@hacettepe.edu.tr)

^b) Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, TR-25240, Erzurum

^c) Department of Chemistry, Faculty of Arts and Sciences, Atatürk University, TR-25240, Erzurum

^d) Department of Chemistry, Hacettepe University, TR-06532, Ankara

Four new triterpene glycosides, named oleanazuroside 1 (1), oleanazuroside 2 (2), ursolazuroside 1 (3), and ursolazuroside 2 (4), together with the seven known compounds 5-11, were isolated from the MeOH extract of the aerial parts of *Anchusa azurea* MILLER var. *azurea*. Their structures were elucidated by means of spectroscopic evidence (UV, IR, MALDI-MS, and 1D- and 2D-NMR). The radical-scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) of the BuOH extract and of 8 and 10 were very strong (*Table 5*).

Introduction. – The genus Anchusa L. (Boraginaceae) is represented by 15 species in the flora of Turkey [1]. Anchusa species are used in folk medicine for wound healing and as a diuretic agent [2][3]. It was found that A. strigosa roots, which are used for the treatment of stomach ulcers in Jordan, prevented ulcer formation in an EtOH-induced gastric-ulcer model in rats [4]. Pyrrolizidine alkaloids, flavonoids, triterpene saponins, fatty acids, and phenolic acids were isolated from Anchusa species [5–17]. In our previous study on the aerial parts of A. leptophylla, flavonol glycosides and triterpene saponins were isolated [18]. In this study, we report the first phytochemical and biological work carried out on A. azurea MILLER var. azurea, which resulted in the isolation and characterization of four new saponins, oleanazuroside 1 (1), oleanazuroside 2 (2), ursolazuroside 1 (3), and ursolazuroside 2 (4), together with the seven known compounds 5-11 (Fig.). In addition, we tested the various extracts and isolated phenolic compounds for radical-scavenging activity by comparison with ascorbic acid as reference.

Results and Discussion. – The MeOH extract of the aerial parts of *A. azurea* var. *azurea* was fractionated with hexane and then BuOH. The BuOH-soluble fraction of the MeOH extract was chromatographed repeatedly on various columns and yielded the eleven compounds 1-11 (*Fig.*). Their structures were elucidated as oleanazuroside 1 (1), oleanazuroside 2 (2), ursolazuroside 1 (3), ursolazuroside 2 (4), $(2\alpha,3\beta,4\alpha,19\alpha)$ -2,3,19,23-tetrahydroxyurs-12-en-28-oic acid β -glucopyranosyl ester (= quercilicosid A; 5) [12][19], kaempferol 3-(β -glucopyranoside) (= astragalin; 6), quercetin 3-(β glucopyranoside) (= isoquercitrin; 7), quercetin 3-(α -rhamnopyranosyl-($1 \rightarrow 6$)- β -glucopyranoside) (9) [20-22], rosmarinic acid (10), and 3-(3,4-dihydroxyphenyl)lactic acid

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Compounds 1-11 isolated from Anchusa azurea MILLER var. azurea

(11) [23] by extensive spectroscopic methods including 1D- (¹H, ¹³C) and 2D-NMR (DQF-COSY, HSQC, and HMBC) experiments as well as positive-ion and reflectronmode MALDI-MS analysis and by comparison of their physical and spectroscopic data with those reported for authentic samples.

The UV spectra of 1-5 showed only an end absorption at 208 nm, indicating the absence of any chromophore. The IR spectra of all compounds 1-5 showed OH group absorption (3400 cm⁻¹), a COOH group absorption (1697 cm⁻¹) for 1 and 2, and an ester group absorption (1724 cm⁻¹) for 3-5.

Compounds 1 and 2 were isolated as white amorphous powders. The molecular formulae of 1 and 2 were defined as $C_{42}H_{68}O_{16}$ and $C_{42}H_{70}O_{15}$, respectively, by positiveion and reflectron-mode MALDI-MS (sodiated molecular ion $[M + Na]^+$ at m/z 851.4387 and 837.7763, resp.). The ¹H- and ¹³C-NMR spectra (*Tables 1* and 2) of 1, which were assigned by various NMR experiments, showed signals assignable to six Me groups (6s, 3 H each, Me(24), Me(25), Me(26), Me(27), Me(29), and Me(30) at δ 0.68, 1.02, 0.80, 1.18, 1.21, and 0.96, resp.), the olefinic H–C(12) (br. *s* at δ 5.27), a CH₂ group (CH₂(23)), and three CH–O groups (br. *s*, H–C(2) at δ 3.66; br. *s*, H–C(3) at δ 3.54; *d*, H–C(21) at 3.56), besides two glucopyranosyl units (*d*, *J* = 7.3 Hz, H–C(1'') at δ 4.43 and *d*, *J* = 7.7 Hz, H–C(1') at δ 4.64). These data also suggested the presence of an oleanolic acid derivative with one of the Me groups replaced by a CH₂OH function [24]. The coupling constants of the anomeric H-atoms and the ¹H- and ¹³C-NMR spectra of **1** indicated the β -conformation for both glucose moieties. Two *dd* at δ 3.68 and 3.84 and δ 3.64 and 3.84 were due to the CH₂(6') and CH₂(6'') groups, respectively, of the sugar units. Two CH–OH signals appeared at δ 3.66 (*ddd*, $J(2\beta,1\alpha) = 11.5$, $J(2\beta,3\alpha) = 9.1$ and $J(2\beta,1\beta) = 5.5$ Hz) and 3.54 (*d*, J = 9.1 Hz) and were assigned to H–C(2) and H–C(3), respectively [25].

	1	2		1	2
$CH_2(1)$	3.31 ^a)	3.30 ^a)	Me(25)	1.02 (s)	0.80 (s)
H-C(2)	3.66 ^a)	3.68 ^a)	Me(26)	0.80(s)	0.80(s)
H-C(3)	3.54 ^a)	2.90 ^a)	Me(27)	1.18(s)	1.07(s)
H-C(5)	0.88ª)	0.83 ^a)	Me(29)	1.21(s)	1.00(s)
$CH_{2}(6)$	0.92 ^a)	1.04ª)	Me(30)	0.96(s)	0.98(s)
$CH_{2}(7)$	a)	1.28ª)	H - C(1')	4.64 (d, J = 7.7)	4.43 (d, J = 7.3)
H-C(9)	1.69 ^a)	1.72 ^a)	H-C(2')	3.19 - 3.24(m)	3.52 - 3.55(m)
$CH_{2}(11)$	1.98ª)	1.94ª)	H-C(3')	3.33 - 3.38(m)	3.56 - 3.59(m)
H - C(12)	5.27 (br. s)	5.26 (br. s)	H-C(4')	3.28-3.33 (<i>m</i>)	3.22 - 3.26 (m)
$CH_{2}(15)$	1.09 ^a)	1.18ª)	H-C(5')	3.30 - 3.38(m)	3.25 - 3.29(m)
$CH_2(16)$	1.96 ^a)	1.98ª)	$CH_{2}(6')$	3.68 (dd, J = 12, 5.5),	3.69 (dd, J = 12.0, 5.1),
H - C(18)	2.88 (dd,	2.87 (dd,		3.84 (dd, J = 12, 2.2)	3.84 (dd, J = 12.0, 2.9)
	J = 10.2, 3.6)	J = 10.1, 3.6)	H - C(1'')	4.43 (d, J = 7.3)	4.64 (d, J = 7.7)
CH ₂ (19)	1.37 ^a)	1.82^{a}), 1.94^{a})	H-C(2")	3.20 - 3.24(m)	3.17-3.19 (<i>m</i>)
H - C(21)	3.56 ^a)	3.56 ^a)	H - C(3'')	3.50 - 3.59(m)	3.30 - 3.36(m)
CH ₂ (22)	1.72 ^a)	$1.70^{a}), 1.90^{a})$	H-C(4")	3.20 - 3.24(m)	3.27 - 3.32 (m)
CH ₂ (23)	^a)	0.96(s)	H-C(5")	3.20 - 3.29(m)	3.30 - 3.39(m)
or Me(23)			CH ₂ (6")	3.64 (dd, J = 12, 5.1)	3.65 (dd, J = 12, 5.0),
Me(24)	0.68 (s)	1.15 (s)		3.84 (<i>dd</i> , <i>J</i> = 12, 2.2)	3.82 (dd, J = 12, 2.0)
^a) Signal pa	ttern unclear di	ue to overlappir	Ι σ.		

Table 1. ¹H-NMR Data (CD₃OD, 400 MHz) of Compounds 1 and 2. δ in ppm, J in Hz.

The ¹³C-NMR and DEPT-90 spectra of **1** showed resonances for all 42 C-atoms revealing 6 Me, 11 CH₂, 17 CH, and 8 quaternary C-atoms. They also showed one COOH signal at δ 179.5, two olefinic C-atoms at δ 122.6 and 143.2 for C(12) and C(13), eleven CH–O groups at δ 68.4–83.6 for C(2), C(3), C(21), C(2')–C(5'), and C(2'')–C(5''), three CH₂–O groups at δ 61.5, 61.8, and 65.0 for C(6'), C(6''), and C(23), and two anomeric C-atoms at δ 103.5 and 103. 8 for C(1') and C(1''), respectively. Direct one-bond ¹H, ¹³C-connectivities of each protonated C-atom were deduced with the help of HSQC data. The structure of **1** was characterized by an HMBC experiment, in which long-range correlations were observed between the

	1	2		1	2
CH ₂ (1)	47.8	47.8	CH ₂ (22)	39.1	39.2
CH(2)	68.4	68.3	$CH_2(23)$ or Me(23)	65.0	28.1
CH(3)	80.3	83.2	Me(24)	12.6	15.9
C(4)	42.9	38	Me(25)	16.3	16.2
CH(5)	46.9	55.5	Me(26)	16.5	16.5
$CH_{2}(6)$	17.9	18.4	Me(27)	25.1	25.1
$CH_{2}(7)$	32.2	32.7	C(28)	179.5	^b)
C(8)	39.3	39.3	Me(29)	29.9	28.3
CH(9)	47.1	47.1	Me(30)	17.2	17.2
C(10)	37.8	36.4	CH(1')	103.5	103.8
$CH_2(11)$	23.9	23.4	CH(2')	75.2	80.3
CH(12)	122.6	122.5	CH(3')	76.9	77.2
C(13)	143.2	143.3	CH(4')	70.3	70.6
C(14)	41.8	41.7	CH(5')	76.6	77.1
$CH_2(15)$	28.3	27.7	CH ₂ (6')	61.5	61.8
$CH_2(16)$	23.4	24	CH(1")	103.8	103.5
C(17)	48.3	48.1	CH(2")	76.3	75.2
CH(18)	40.8	40.9	CH(3")	77.2	76.6
$CH_2(19)$	46.7	46.9	CH(4")	70.6	70.3
C(20)	36.4	36.4	CH(5")	77.1	76.3
CH(21)	83.6	83.7	CH ₂ (6")	61.8	61.5

Table 2. ¹³C-NMR Data (CD₃OD, 100 MHz) of Compounds 1 and 2^{a}). δ in ppm.

^a) Assignments were based on COSY, HSQC, and HMBC experiments. ^b) Signal pattern unclear due to overlapping.

following H-atom and C-atom pairs: H-C(1') (δ 4.64 (d, J = 7.7 Hz))/C(3) (δ 80.3) and H-C(1'') (δ 4.43 (d, J = 7.3 Hz))/C(21) (δ 83.6).

The 1D- and 2D-NMR data of **2** were in agreement with those of **1** (*Tables 1* and 2). The only difference between **2** and **1** was the lack of one CH₂ group and the presence of an additional Me group in **2** (Me(23) at δ (C) 28.1 and δ (H) 0.96), besides long-range correlations between these Me H-atoms and C(3), C(4), and C(5). Furthermore, the position of the sugar residues was evident from the HMBC spectra where the anomeric H–C(1') (δ 4.43) and H–C(1'') (δ 4.64) exhibited connectivities with C(21) (δ 83.7) and C(2') (δ 80.3), respectively.

Assignment of all the ¹H- and ¹³C-NMR data of **1** and **2** was accomplished by further comparisons with those of oleanolic acid (=(3β)-3-hydroxyolean-12-en-28-oic acid) and its glycosides [26][27], hederagenin (=(3β ,4\alpha)-3,23-dihydroxyolean-12-en-28-oic acid), and its glycosides [28][29], caccigenin (=(2α , 3β , 4α ,21 β)-2,3,21,23-tetrahydroxyolean-12-en-28-oic acid) and its glycosides [8][9][19][30], and arjunolic acid (=(2α , 3β ,4\alpha)-2,3,23-trihydroxyolean-12-en-28-oic acid) and arjunglucoside II (=(2α , 3β ,4\alpha)-2,3,23-trihydroxyolean-12-en-28-oic acid) and arjunglucoside II (=(2α , 3β ,4\alpha)-2,3,23-trihydroxyolean-12-en-28-oic acid β -D-glucopyranosyl ester) [31]. The type of aglycone of compounds **1** and **2** was determined as caccigenin. Consequently, the structures of compounds **1** and **2**, which are novel natural products, were concluded to be (2α , 3β , 4α , 21β)-3,21-bis(β -glucopyranosyloxy)-2,23-dihydroxyolean-12-en-28-oic acid and (2α , 3β , 21β)-21-[(β -glucopyranosyl-($1 \rightarrow 2$)- β -glucopyranosyl-(3β , 4α , 21β)-21-[(β -glucopyranosyl-($1 \rightarrow 2$)- β -glucopyranosyl-(3β , 4α , 21β)-21-[(β -glucopyranosyl-($1 \rightarrow 2$)- β -glucopyranosyl-(3β , 4α , 21β)-21-[(β -glucopyranosyl-($1 \rightarrow 2$)- β -glucopyranosyl-(3β , 4α , 21β)-21-[(β -glucopyranosyl-(3β , 4α , 3β , 4β)-21-[(β -glucopyranosyl-(3β , 4β , 4β , 4β , 4β]-21-[(β -glucopyranosyl-(3β , 4β , 4β)-21-[(β -glucopyranosyl-(3β , 4β , 4β , 4β]-21-[(β -glucopyranosyl-(3β , 4β , 4β , 4β]-21-[(β -glucopyranosyl-(3β , 4β , 4β , 4β , 4β]-21-[(β -glucopyranosyl-(3β , 4β , 4β]-21-[(β -glucopyra

nosyl)oxy]-2,3-dihydroxyolean-12-en-28-oic acid, respectively. Their trivial names are proposed as oleanazuroside 1 (1) and oleanazuroside 2 (2).

Saponins **3**–**5** were obtained as amorphous colorless compounds. Their ¹³C-NMR spectra revealed 36 C-atom signals of which 6 were assigned to a hexose unit and the remaining 30 signals to a triterpenoid skeleton. The aglycones appeared to have ursane-type skeletons according to their NMR spectra (*Tables 3* and 4) [26][32]. In the ¹³C-NMR spectrum, the signal of C(28) at δ 177.3, consistent with the IR absorption at 1724 cm⁻¹, indicated the presence of an ester group. Assignments for all H- and C-atom resonances (*Tables 3* and 4) were achieved by COSY, HSQC, and HMBC experiments. The ¹H-NMR spectra of **3**–**5** exhibited resonances for the anomeric H-atom of the sugar moiety at δ *ca.* 5.31 (*d*, *J* = 8.0 Hz, 1 H) which was assigned to the anomeric H-atom of β -glucose. In addition, the shifts observed for the C-atoms of the β -glucose unit, the values of the anomeric C-atom C(1') (δ *ca.* 94.5) were in agreement with a site of glycosylation at the C(28)OOH group. Furthermore, HMBCs between the anomeric H-atoms H–C(1') (δ *ca.* 5.31) and C(28) (δ 177.3) were found. The ¹H-NMR of **3** showed two CH–O groups at δ 4.10 and 2.85, assigned to H–C(2) and H–C(3), respectively.

Table 3. ¹H-NMR Data (CD₃OD, 400 MHz) for Compounds 3 and 4. δ in ppm, J in Hz.

	3	4		3	4
CH ₂ (1)	3.40^{a}), 3.20^{a})	3.40^{a}), 3.20^{a})	CH ₂ (22)	1.75 ^a)	1.75 ^a)
H-C(2)	4.10 ^a)	4.10 ^a)	Me(23)	1.33(s)	9.8 (s)
H-C(3)	2.85(d,	2.85(d,	or H–C(23)		
	J = 9.5, 3.1)	J = 9.5, 3.1)	Me(24)	0.79(s)	0.78(s)
H-C(5)	1.09 ^a)	a)	Me(25)	0.96(s)	0.93(s)
$CH_2(6)$	1.81 ^a)	1.81 ^a)	Me(26)	1.94 (s)	1.94 (s)
$CH_{2}(7)$	1.79 ^a)	1.79 ^a)	Me(27)	1.19 (s)	1.18 (s)
H-C(9)	1.70 ^a)	1.70 ^a)	Me(29)	1.37(s)	1.35(s)
$CH_{2}(11)$	2.01 ^a)	2.01 ^a)	Me(30)	0.92 (d, J = 6.5)	a)
H - C(12)	5.30 (br. s)	5.31 (br. s)	H-C(1')	5.31 (d, J = 8)	5.30 (d, J = 8)
$CH_2(15)$	1.78 ^a)	1.78 ^a)	H-C(2')	3.28 - 3.32 (m)	a)
$CH_{2}(16)$	1.21 ^a)	1.21 ^a)	H-C(3')	3.30 - 3.33(m)	a)
H - C(18)	2.51(s)	2.51(s)	H-C(4')	3.32 - 3.37(m)	a)
H - C(20)	1.33 ^a)	1.33 ^a)	H-C(5')	3.37 - 3.43 (m)	a)
$CH_{2}(21)$	1.21 ^a)	1.21 ^a)	$CH_2(6')$	3.65 (dd, J = 12, 4.3),	3.67 (dd, J = 12, 4.5)
				3.80 (dd, J = 12, 2.0)	3.77 (dd, J = 12, 2.0)

^a) Signal pattern unclear due to overlapping.

Comparison of the NMR spectra of **3** with that of quercilicoside A $(=(2\alpha,3\beta,4\alpha,19\alpha)-2,3,19,23$ -tetrahydroxyurs-12-en-28-oic acid β -D-glucopyranosyl ester; **5**), the major triterpene isolated from *Quercus laurifolia* previously [33], showed that most of the C-atom resonances (*Table 4*) were almost superimposable; the only meaningful difference was observed for the C(23) position which was attributed to the presence of a Me(23) group in **3** instead of a CH₂(23)OH group in quercilicoside A (**5**). The ¹H- and ¹³C-NMR spectra of **4** were very similar to those of **3**, except for the replacement of a Me signal by an CHO group. This was consistent with a signal at δ

	3	4		3	4
$CH_{2}(1)$	47.1	46.3	C(19)	72.4	72.4
CH(2)	68.2	68.0	CH(20)	41.7	41.7
CH(3)	83.3	81.5	$CH_{2}(21)$	28.4	28.4
C(4)	40.0	54.2	$CH_{2}(22)$	37.0	37.1
CH(5)	56.5	56.9	Me(23) or CH(23)	23.3	207.4
$CH_{2}(6)$	20.3	20.2	Me(24)	16.3	15.4
$CH_{2}(7)$	33.2	32.5	Me(25)	14.4	16.3
C(8)	40.0	39.9	Me(26)	15.4	18.8
CH(9)	46.7	46.2	Me(27)	25.9	24.0
C(10)	38.4	38.1	C(28)	177.3	177.3
$CH_2(11)$	23.7	23.4	Me(29)	23.9	26.0
CH(12)	128.4	128.2	Me(30)	15.4	16.4
C(13)	138.5	138.5	CH(1')	94.6	94.5
C(14)	41.6	41.5	CH(2')	72.7	72.6
CH ₂ (15)	25.3	29.1	CH(3')	77.3	77.4
CH ₂ (16)	26.0	25.3	CH(4')	69.9	69.9
C(17)	48.4	^b)	CH(5')	77.1	77.0
CH(18)	53.8	53.7	CH ₂ (6')	61.2	61.2

Table 4. ¹³C-NMR Data for Compounds 3 and 4 (CD₃OD, 100 MHz)^a). δ in ppm.

^a) Assignments were based on COSY, HSQC, and HMBC experiments. ^b) Signal pattern unclear due to overlapping.

207.4 for CH(23)=O. The positive-ion and reflectron-mode MALDI-MS quasimolecular ions $[M + H]^+$ of **3** and **4** gave peaks at m/z 651.4016 for C₃₆H₅₉O⁺₁₀ and 665.3812 for C₃₆H₅₇O⁺₁₁, respectively. Thus, compounds **3** and **4** were established as $(2\alpha,3\beta,19\alpha)$ -2,3,19-trihydroxyurs-12-en-28-oic acid β -glucopyranosyl ester and $(2\alpha,3\beta,4\alpha,19\alpha)$ -2,3,19-trihydroxy-23-oxours-12-en-28-oic acid β -glucopyranosyl ester for which the trivial names ursolazuroside 1 and ursolazuroside 2 are proposed, respectively.

DPPH-Radical-scavenging activity of the extracts prepared from A. azurea aerial parts and phenolic compounds which were isolated from their BuOH extract are shown in *Table 5* (DPPH = 2,2-diphenyl-1-picrylhydrazyl). The scavenging activities of the BuOH extract and of **8** and **10** were very strong. Recent research suggests a role for antioxidants in wound healing. A. azurea is rich in antioxidant phenolic compounds like flavonoids and phenolic acids. Additionally, oleanolic acid has shown a good woundhealing activity [34]. In summary, these isolated compounds may play a significant role in the ethnobotanical usage of A. azurea.

This work was supported by the *Research Foundation of Hacettepe University* (Grant No: 302301005) of Turkey. The authors thank Prof. *Hayri Duman* (Gazi University, Dept. of Biology) for authentication of the plant.

	<i>IC</i> ₅₀ ^a) [µg/ml]		<i>IC</i> ₅₀ ^a) [µм]	
Hexane extract	-	6	-	
BuOH extract	24.42	7	65.93	
MeOH extract	-	8	25.92	
H ₂ O extract	88.65	9	_	
2		10	24.38	
		Ascorbic acid ^b)	12.01	

Table 5. DPPH-Radical-Scavenging Activities of the Extracts and of Compounds 6-10

^a) IC_{50} values were calculated from regression lines obtained with six different concentrations in triplicate. ^b) Positive control.

Experimental Part

General. DPPH (2,2-diphenyl-1-picrylhydrazyl = 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazinyl) was used for the radical-scavenging-activity test. TLC: precoated silica gel 60 F_{254} aluminium sheets (*Merck*); detection by UV fluorescence and spraying with 1% vanillin/H₂SO₄ reagent, followed by heating at 105° for 1 – 2 min. Column chromatography (CC): silica gel 60 (0.063 – 0.200 mm; *Merck*) and *Sephadex LH-20 (Fluka)*. Vacuum liquid chromatography (VLC): reversed-phase *Lichroprep RP-18* (25 – 40 µm; *Merck*). Prep. HPLC: *Büchi* (3 × 45 cm) glass columns packed with *LiChroprep C₁₈* (40 – 63 µm; *Merck*); *Dionex-P680* pump. Optical rotation: *Rudolph-Research-Analytical-Autopol-IV* automatic polarimeter; in MeOH. UV Spectra: *Biotek-µQuant-MQX200* microplate spectrophotometer; in MeOH; λ_{max} (log ε) in nm. IR Spectra: *Matson-1000*-FT-IR spectrophotometer; KBr pellets; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Varian-Mercury-plus* spectrometer; at 400 (¹H) and 100 MHz (¹³C) in CD₃OD; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. HR- (pos.) and MALDI-TOF-MS (reflectron pos., mass resolution 14700): *Applied Biosystems Voyager DE*TM, PRO; in *m/z* (rel. %).

Plant Material. Anchusa azurea MILLER var. *azurea* was collected from Ankara-Beytepe, Turkey on 07/15/2003. A voucher specimen was deposited with the Herbarium of Hacettepe University, Faculty of Pharmacy, Ankara, Turkey, under the number HUEF 03012.

Extraction and Isolation. Air-dried and powdered aerial parts (600 g) were extracted with 3×31 of MeOH at 45° for 4 h. The filtered, combined, and concentrated MeOH extract (78 g) was dissolved in dist. H₂O (150 ml) and partitioned with hexane and BuOH (7 g). The BuOH-soluble fraction of the MeOH extract was subjected to CC (*Sephadex LH-20*): *Fractions A – E. Fr. A* (3.6 g) was subjected to reversed-phase prep. HPLC (30-100% MeOH/H₂O) and repeatedly to normal-phase CC (SiO_2 , CHCl₃/ MeOH/H₂O 90:10:1, 80:20:2, 70:30:3, and 60:40:4), and CC (*Sephadex LH-20*, MeOH): **1** (96 mg), **2** (15 mg), **3** (28 mg), **4** (29 mg), **5** (16 mg), and **10** (200 mg). *Fr. C* (1.2 g) was purified by repeated-reversed-phase VLC (0-100% MeOH/H₂O), normal-phase CC (SiO_2 , AcOEt/MeOH:H₂O 100:7.5:2.5 and 100:10:5), and CC (*Sephadex LH-20*): **6** (46 mg), **7** (20 mg), **8** (14 mg), **9** (70 mg), and **11** (5 mg).

Oleanazuroside 1 (=(2*a*,3*β*,4*a*,21*β*)-3,21-*Bis*(*β*-glucopyranosyloxy)-2,23-dihydroxyolean-12-en-28-oic Acid; **1**): Amorphous colorless powder. $[\alpha]_{D}^{20}$ = +3.2 (*c* = 0.5, MeOH). IR: 3379, 2921, 1697, 1634, 1078. ¹H- and ¹³C-NMR: *Tables 1* and 2. MALDI-MS (pos. and reflectron mode): 851.4387 ([*M*+Na]⁺, C₄₂H₆₈NaO⁺₁₆; calc. 851.4405).

Oleanazuroside 2 (= $(2\alpha, 3\beta, 21\beta)$ -21-[(2-O- β -Glucopyranosyl- β -glucopyranosyl)oxy]-2,3-dihydroxyolean-12-en-28-oic Acid; **2**): Amorphous colorless powder. [α]_D²⁰ = -0.8 (c = 0.5, MeOH). IR: 3374, 2945, 1699, 1634, 1077. ¹H- and ¹³C-NMR: *Tables 1* and 2. MALDI-MS (pos. and reflectron mode): 837.7763 ([M + Na]⁺, C₄₂H₇₀NaO₁₅; calc. 837.4607).

Ursolazuroside 1 (= (2α , 3β , 19α)-2, 3, 19-*Trihydroxyurs*-12-*en*-28-*oic Acid* β -*Glucopyranosyl Ester*; **3**): Amorphous colorless powder. [a]₂₀²⁰ = - 30 (c = 0.06, MeOH). IR: 3391, 2931, 1724, 1462, 1070. ¹H- and ¹³C-NMR: *Tables 3* and 4. MALDI-MS (pos. and reflectron-mode): 651.4016 ([M + H]⁺, $C_{36}H_{39}O_{10}^+$; calc. 651.4108).

Ursolazuroside 2 (= $(2\alpha, 3\beta, 4\alpha, 19\alpha)$ -2,3,19-Trihydroxy-23-oxours-12-en-28-oic Acid β -Glucopyranosyl Ester; **4**): Amorphous colorless powder. [α]_D^{2D} = -10 (c = 0.2, MeOH). IR: 3400, 2935, 1735, 1070. ¹Hand ¹³C-NMR: Tables 3 and 4. MALDI-MS (pos. and reflectron mode): 665.3812 ([M + H]⁺, C₃₆H₅₇O₁₁; calc. 665.3901).

DPPH-Radical-Scavenging Activity. The DPPH assay was carried out by the method described in [35]. The radical-scavenging effect of the extracts and the isolated compounds 6-10 was assessed spectroscopically by the decoloration of the MeOH soln. of DPPH; ascorbic acid was used as standard. Each MeOH soln. (230 µl) of the tested compounds at various concentrations (100, 50, 25, 10, 5, and 1 µg/ml for extracts and 200, 100, 50, 25, 10, and 1 µM for substances) was added to the DPPH soln. (50 µl; 0.022% in MeOH). The mixture was allowed to react for 30 min at r.t. The absorbance of the soln. was read at 517 nm with a spectrophotometer The radical-scavenging activity was determined by comparing the absorbance with that of a blank (100%) containing only DPPH and solvent. The percentage of radical-scavenging activity (*RSA* [%]) was calculated as follows: *RSA* [%]=[($A_c - A_t$)/ A_c] × 100%, where A_c is the average absorbance of the control, and A_t is the absorbance of the test compounds. All the analyses were performed in triplicates. *IC*₅₀ Values are given in *Table 5*.

REFERENCES

- D. F. Chamberlain, 'Anchusa L.', in 'Flora of Turkey and East Aegean Islands', Ed. P. H. Davis, University Press, Edinburgh, 1978, Vol. 6, p. 388.
- [2] E. Yeşilada, G. Honda, E. Sezik, M. Tabata, F. Tetsuro, T. Tanaka, Y. Takeda, Y. Takaishi, J. Ethnopharmacol. 1995, 46, 133.
- [3] G. Honda, E. Yeşilada, M. Tabata, E. Sezik, F. Tetsuro, Y. Takeda, Y. Takaishi, T. Tanaka, J. Ethnopharmacol. 1996, 53, 75.
- [4] A. M. Disi, S. O. Tamimi, G. M. Abuereish, J. Ethnopharmacol. 1998, 60, 189.
- [5] G. Romussi, S. Cafaggi, L. Mosti, Pharmazie 1979, 34, 751.
- [6] G. Romussi, G. Ciarallo, G. Falsone, C. Schneider, Liebigs Ann. Chem. 1979, 12, 2028.
- [7] G. Romussi, S. Cafaggi, G. Bignardi, *Pharmazie* 1980, 35, 498.
- [8] G. Romussi, G. Falsone, A. E. G. Crea, E. Finner, Arch. Pharm. 1983, 316, 499.
- [9] G. Romussi, G. Falsone, D. Wendisch, B. Parodi, Liebigs Ann. Chem. 1984, 1869.
- [10] G. Romussi, G. Falsone, D. Wendisch, Arch. Pharm. 1986, 319, 549.
- [11] G. Romussi, S. Cafaggi, C. Pizza, Arch. Pharm. 1988, 321, 753.
- [12] G. Romussi, G. Falsone, Pharmazie 1983, 38, 787.
- [13] G. Romussi, G. Falsone, Arch. Pharm. 1985, 318, 219.
- [14] H. Hendriks, A. P. Bruins, H. J. Huizing, Biomed. Environ. Mass Spectrom. 1988, 17, 129.
- [15] A. El-Shazly, M. El-Domiaty, L. Witte, M. Wink, Biochem. Syst. Ecol. 1998, 26, 619.
- [16] N. Erdemoglu, S. Kusmenoglu, M. Vural, Eur. J. Lipid Sci. Technol. 2004, 106, 160.
- [17] J. L. Guil-Guerrero, F. Maroto, F. Garcia, A. Gimenez, J. Am. Oil Chem. Soc. 2001, 78, 677.
- [18] L. Ö. Demirezer, A. Zeeck, H. U. J. Fac. Pharm. 2000, 20, 7.
- [19] G. Romussi, G. Bignardi, F. Sancassan, G. Falsone, Liebigs Ann. Chem. 1983, 1448.
- [20] T. J. Mabry, K. R. Markham, M. B. Thomas, 'The Systematic Identification of Flavonoids', Springer-Verlag, New York, 1970.
- [21] K. R. Markham, H. Geiger, 'The Flavonoids: Advances in Research', Ed. J. B. Harborne and Mabry, Chapman & Hall Ltd., New York, 1982, Chapt. 2, p. 19.
- [22] K. R. Markham, V. M. Chari, 'The Flavonoids: Advances in Research', Ed. J. B. Harborne and Mabry, Chapman & Hall Ltd., New York, 1982, Chapt. 10, p. 441.
- [23] C. J. Kelley, R. C. Harruff, M. Carmack, J. Org. Chem. 1976, 41, 449.
- [24] S. B. Mahato, A. P. Kundu, Phytochemistry 1994, 35, 1515.
- [25] H. Kojima, H. Ogura, Phytochemistry 1989, 28, 1703.
- [26] W. Seebacher, N. Simic, R. Weis, R. Saf, O. Kunert, Magn. Reson. Chem. 2003, 41, 636.
- [27] Y. Zang, D. L. DeWitt, S. Murugesan, M. G. Nair, Life Sci. 2005, 77, 3222.
- [28] K. Hostettmann, Helv. Chim. Acta. 1980, 63, 606.

- [29] H. B. Wang, R. Mayer, G. Rücker, Phytochemistry 1993, 33, 1469.
- [30] F. N. Ngounou, Atta-ur-Rahman, M. I. Choudhary, S. Malik, S. Zareen, R. Ali, D. Lontsi, B. L. Sondengam, *Phytochemistry* 1999, 52, 917.
- [31] G. Romussi, N. De Tommasi, Pharmazie 1992, 47, 877.
- [32] B. Baykal, T. Panayır, D. Tasdemir, O. Sticher, I. Çalıs, Phytochemistry 1998, 48, 867.
- [33] G. Romussi, G. Caviglioli, C. Pizza, N. De Tommasi, Arch. Pharm. 1993, 326, 525.
- [34] G. Moura-Letts, L. F. Villegas, A. Marcalo, A. J. Vaisberg, G. B. Hammond, J. Nat. Prod. 2006, 69, 978.
- [35] A. Cavin, K. Hostettmann, W. Dyatmyko, O. Potterat, Planta Med. 1997, 64, 393.

Received June 12, 2009